Thursday, June 24, 2021

Evaluation of urban greenspace vulnerability to typhoon in Taiwan

 




                                  Evaluation of urban greenspace vulnerability to typhoon in Taiwan

Authors: Kim-Anh Nguyen, Yuei-An Liou, Trong-Hoang Vo, Dao Dinh Cham, Hoang Son Nguyen

https://doi.org/10.1016/j.ufug.2021.127191

Journal: Urban Forestry & Urban Greening. (SCI, IF=4.021; RF = 3/68, Forestry)

Abstract

Urban greenspace (UGS) represents an essential component of city ecosystems. It plays a critical role for various purposes, such as reducing urban heat island effect and air pollution, regulating torrential run-off and offering joyful routes for walking, jogging and cycling based on personal interest as well as a platform for social networking. It is especially important in a populated country like Taiwan with population highly concentrated in cities. It is rather vulnerable to strong winds and heavy precipitation brought up by typhoons, while there are no existing frameworks to access its vulnerability to typhoons in Taiwan.

Here, we examine the vulnerability of UGS to typhoons in Taiwan by a novel assessment framework considering 21 indicators organized into three dimensions, including hazard, exposure/sensitivity and adaptive capacity. The 21 indicators are derived from the Sentinel-2 MSI data obtained from European Space Agency (ESA), typhoon data acquired from Japan Meteorology Agency (JMA), and census data achieved by the government official sites of Taiwan. Google Earth Engine and GIS are used to analyze the deviation of UGS variables. Five major metropolitan areas of Taiwan are selected as the study sites, consisting of Taipei, New Taipei, Taoyuan, Taichung, and Kaohsiung cities. Interestingly, it is found that (i) There exists a great spatial gap between hazard levels and the top-priority regions to enhance the strategies and adaptive capacity in order to better respond to typhoons in Taiwan; (ii) The Northern and middle parts of Taiwan exhibit high and very high hazard levels since the occurrence frequency and wind speed of typhoons are higher. In contrast, the Southern Taiwan is characterized by low and very low hazard levels occupying over approximately half of the study sites; (iii) Exposure and sensitivity of the UGS in Taiwan vary greatly from very low to very high levels over the study sites with 43 % attributed to high and very high levels; and (iv) 22 % of the metropolitan areas are classified as high and very high vulnerable, mainly distributed over the Taoyuan, Taichung, Taipei, and New Taipei cities. Results suggest that the presented framework is useful in evaluating the vulnerability of UGS to typhoons and implicates proper management of urban trees as a nature-based solution to mitigate the impacts of climate change.


Altering urban greenspace patterns and heat stress risk in Hanoi city during Master Plan 2030 implementation

 



Altering urban greenspace patterns and heat stress risk in Hanoi city during Master Plan 2030 implementation

Authors: Yuei-An Liou, Kim-Anh Nguyen, Le-Thu Ho

https://doi.org/10.1016/j.landusepol.2021.105405

Journal: Land Use Policy 105 (2021) 105405. (SSCI, IF = 3.682, RF = 28/123, Environment Studies)

Abstract

Hanoi City has been greatly reshaped owing to its “Master Plan by 2030 and a vision to 2050 by Decision 1259/QD-TTg of Vietnam” (called Hanoi Master Plan thereafter). This Hanoi Master Plan results in multi-challenges for the Hanoi City in terms of conserving urban greenspace (UGS). This study pursues to (1) investigate the changing environmental spatial patterns of UGS, (2) identity the areas at high risk due to heat stress based on abnormal land surface temperature (LST) distribution and demographic vulnerability, and (3) suggest mitigation strategies to the authorities by using the proposed UGS management platform. Sentinel-2 multispectral instrument (MSI) data was used to examine the evolution of UGS in relation to LST derived from Landsat 8 OLI thermal band that was subsequently utilized to create heat stress risk patterns. The study region is the inner Hanoi City. The UGS was investigated during the timeframe from Oct. 2016 to Oct. 2018. Accuracy assessment was performed by using Google Earth and field survey data. Results showed that UGS in inner Hanoi City is much declined by 1.3% for woodland and by 4.4% for shrub land, while grass-cover is increased by 2.4% in recent 2 years. Overall accuracies are of 96% and 88% with Kappa coefficients of 0.92 and 0.78 for land cover classification in 2018 and 2016, respectively. Urban heat stress index patterns showed a higher risk in the central inner-city areas of dense residential regions characterized by dense built-up. The identification of environmental heat stress risk patterns provides useful information for calling more attention of urban planners, authorities and health organizations.



 

News

Blogroll

About

Innovative technological platform to improve management of green areas for better climate adaptation in urban areas